Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Am Heart Assoc ; 12(6): e027801, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2264637

ABSTRACT

Background Meta-analysis can identify biological factors that moderate cardiac magnetic resonance myocardial tissue markers such as native T1 (longitudinal magnetization relaxation time constant) and T2 (transverse magnetization relaxation time constant) in cohorts recovering from COVID-19 infection. Methods and Results Cardiac magnetic resonance studies of patients with COVID-19 using myocardial T1, T2 mapping, extracellular volume, and late gadolinium enhancement were identified by database searches. Pooled effect sizes and interstudy heterogeneity (I2) were estimated with random effects models. Moderators of interstudy heterogeneity were analyzed by meta-regression of the percent difference of native T1 and T2 between COVID-19 and control groups (%ΔT1 [percent difference of the study-level means of myocardial T1 in patients with COVID-19 and controls] and %ΔT2 [percent difference of the study-level means of myocardial T2 in patients with COVID-19 and controls]), extracellular volume, and the proportion of late gadolinium enhancement. Interstudy heterogeneities of %ΔT1 (I2=76%) and %ΔT2 (I2=88%) were significantly lower than for native T1 and T2, respectively, independent of field strength, with pooled effect sizes of %ΔT1=1.24% (95% CI, 0.54%-1.9%) and %ΔT2=3.77% (95% CI, 1.79%-5.79%). %ΔT1 was lower for studies in children (median age: 12.7 years) and athletes (median age: 21 years), compared with older adults (median age: 48 years). Duration of recovery from COVID-19, cardiac troponins, C-reactive protein, and age were significant moderators for %ΔT1 and/or %ΔT2. Extracellular volume, adjusted by age, was moderated by recovery duration. Age, diabetes, and hypertension were significant moderators of the proportion of late gadolinium enhancement in adults. Conclusions T1 and T2 are dynamic markers of cardiac involvement in COVID-19 that reflect the regression of cardiomyocyte injury and myocardial inflammation during recovery. Late gadolinium enhancement and to a lesser extent extracellular volume, are more static biomarkers moderated by preexisting risk factors linked to adverse myocardial tissue remodeling.


Subject(s)
COVID-19 , Contrast Media , Child , Humans , Aged , Young Adult , Adult , Middle Aged , Gadolinium , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests
2.
J Cardiovasc Magn Reson ; 24(1): 73, 2022 12 21.
Article in English | MEDLINE | ID: covidwho-2196336

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory suyndrome coronavirus 2 (SARS-CoV-2) is now entering its 4th year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. While pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play, RTP) following resolution of infection. A variety of different testing combinations that leverage the electrocardiogram, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance (CMR) imaging have been proposed and implemented to mitigate risk. CMR in particular affords high sensitivity for myocarditis but has been employed and interpreted non-uniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to RTP. This consensus document synthesizes available evidence to contextualize the appropriate utilization of CMR in the RTP assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.


Subject(s)
COVID-19 , Myocarditis , Sports , Humans , American Heart Association , Consensus , Leadership , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Predictive Value of Tests , SARS-CoV-2 , United States , Societies, Medical
3.
Circ Cardiovasc Imaging ; 16(1): e014106, 2023 01.
Article in English | MEDLINE | ID: covidwho-2194406

ABSTRACT

The global pandemic of COVID-19 caused by infection with SARS-CoV-2 is now entering its fourth year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. Although pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play) following resolution of infection. A variety of different testing combinations that leverage ECG, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance imaging have been proposed and implemented to mitigate risk. Cardiovascular magnetic resonance in particular affords high sensitivity for myocarditis but has been employed and interpreted nonuniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to return to play. This consensus document synthesizes available evidence to contextualize the appropriate utilization of cardiovascular magnetic resonance in the return to play assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.


Subject(s)
COVID-19 , Radiology , Sports , Humans , United States/epidemiology , SARS-CoV-2 , Consensus , American Heart Association , Leadership , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL